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Abstract

ChromaTech is a simulator for preparative liquid chromatography processes with mass transport described by the
pore and surface diffusion general rate model. A discontinuous Galerkin spectral element method is used for spatial
discretization with exponential decay of approximation errors within elements. The code is validated by numerically
reproducing a high-precision reference obtained with CADET-semi-analytic. The performance of ChromaTech is tested
by comparing against CADET, a dedicated code based on a weighted essentially non-oscillatory finite volume method
with second (low) order spatial accuracy. Reassuringly, ChromaTech provides exactly the same chromatograms as
CADET for multicomponent protein purification cases with linear and non-linear adsorption dynamics. However, the
numerical results show, that ChromaTech has superior efficiency in terms of computational cost and discrete problem size
without compromising stability. The spatial discretization is the major difference between the two codes for solution of
the pore and surface diffusion general rate model. Thus, it demonstrates, that spectral methods are not just competitive
with second (low) order accurate methods often used by default, but simply a superior approach for spatial discretization
of liquid chromatography flow problems in terms of computational efficiency.

Keywords: High-order; Discontinuous Galerkin Spectral element method; Liquid chromatography; Steric-mass-action
isotherm; General rate model; Parallel pore/surface diffusion

1. Introduction

Biopharmaceuticals provide important therapeutic op-
tions for many serious clinical conditions (Sanchez-Garcia
et al., 2016). Unfortunately, access to these products re-
mains a significant problem for patients. That is often be-
cause of high treatment cost (Kozlowski et al., 2011; Monk
et al., 2017; Cherny et al., 2016), e.g. a monoclonal anti-
body treatment for cancer can cost up to $35,000 annually
per patient (Farid, 2007).

Today, it is globally accepted to develop biopharma-
ceticals that are similar to a reference product (biosim-
ilars) to reduce drug prices (Cazap et al., 2018). With
the blossoming of the biosimilar market (Walsh, 2018),
biopharmaceutical companies are challenged by increased
economical pressure from biosimilars (Ahmed et al., 2012).
Therefore, reduction of production cost is likely to gain im-
portance relative to speed-to-market as the main market
driver (Nfor et al., 2009).

The production costs are typically dominated by down-
stream bioprocessing (McGlaughlin, 2012). Here, liquid
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chromatography columns operated in batch-mode are core
unit operations used to recover and purify biopharmaceu-
ticals from complex fermentation broth. It seems unlikely
that it will lose its place in biomanufacturing in the fore-
seeable future (Hanke and Ottens, 2014).

In industry, chromatography columns are typically op-
erated based on robust and fixed manufacturing schedules
(Close et al., 2014) without feedback control and plant-
wide coordination. This causes a loss of performance that
can potentially be avoided, by adjusting the process with
inputs that are on-time and that are optimized, based on
on-line measurements. Model predictive control is used to
reduce production costs in other industries where efficient
manufacturing has been important for decades (Lee, 2011;
Huusom, 2015), e.g. for manufactures that uses distilla-
tion columns (Meyer et al., 2017).

Recently, the benefits of plant-wide process control for
biomanufacturing has been demonstrated in small-scale
equipment (Gomis-Fons et al., 2020; Feidl et al., 2020).
Moreover, the benefits of model predictive control have
been demonstrated for several chromatographic systems,
see e.g. Papathanasiou et al. (2017); Engell (2007). How-
ever, the solution of optimal control problems constrained
by non-linear chromatographic models is computationally

June 12, 2020



demanding (Holmqvist and Magnusson, 2016), especially
if combined with non-linear state estimation such as the
extended Kalman filter to handle process uncertainty and
plant-model mismatch (Hgrsholt et al., 2019a,b). Other
relevant numerical challenges arise for e.g. Bayesian infer-
ence applications (Briskot et al., 2019), process synthesis
of detailed flow-sheets (Pirrung et al., 2017, 2019), simu-
lation of 2D general rate models (Qamar et al., 2017), and
for simulation of chromatography models with inhomoge-
neous resin beads (Gerontas et al., 2013; Piittmann et al.,
2014).

Thus, the current digitalization of biomanufacturing
processes (Nargund et al., 2019) can benefit from more
efficient algorithms to solve non-linear mechanistic-type
process models. For this reason, ChromaTech (Meyer
Chroma Technology ApS, Technical University of Den-
mark) (Meyer, 2020) has been developed. In this work,
the attention will be on batch chromatography, although
the presented method can be extended to e.g. continuous
chromatographic systems (Rathore et al., 2018).

ChromaTech is based on a discontinuous Galerkin spec-
tral element method in nodal form (Hesthaven and War-
burton, 2002, 2008), that allows arbitrary high-order
(spectral) convergence within elements while retaining sta-
bility of the method (Meyer et al., 2018b, 2019). Moreover,
the method is mass-conservative and can be naturally ex-
tended to support mesh refinement with adaptive element
sizes and polynomial orders (hp-adaptivity), see e.g. Palm
et al. (2017). The discontinuous Galerkin method can be
considered a high-order generalization of the finite volume
method (Dumbser et al., 2008).

A multi-element formulation is used to discretize the
convection-dominated mobile phase flow to localize steep
concentration fronts within elements. The purely diffusive
flow in the pore phase is discretized within a single-element
domain with global spectral convergence rate.

Such spectral methods are in general gaining promi-
nence in science and engineering over traditional meth-
ods with second (low) order spatial accuracy due to im-
proved accuracy at reduced computational costs (Xu et al.,
2018). However, their use is often limited by their com-
plexity, which makes them challenging to implement and
use. ChromaTech encloses the mathematical complexities
of these methods in efficient C++ routines, with the aim
of making them accessible to the biomanufacturing indus-
tries.

Here, the objective is to demonstrate the computational
benefits of using spectral discontinuous Galerkin methods
compared to second (low) order methods often used by de-
fault for spatial discretization of chromatography models.
The performance is measured in terms of computational
cost and discrete problem size (i.e. the length of the state-
vector) while stability must be retained. A small discrete
problem size is beneficial since a smaller system has to be
stored and integrated in time. Moreover, it is beneficial
for non-linear state estimation (Hgrsholt et al., 2019a).

The Chromatography Analysis and Design Toolkit

(CADET) (Jiilich Research Center) (von Lieres and An-
dersson, 2010; Piittmann et al., 2013; Leweke and von
Lieres, 2018) is used for benchmark comparisons. It is
based on a second (low) order accurate weighted essen-
tially non-oscillatory finite volume method typically used
due to strong built-in stability properties. It is well suited
as a benchmark, since its C++ implementation has been
optimized over long development time lines. Moreover, it
is the only chromatography simulator that is open source
and free of charge with unlimited functionality enabling
us to extract relevant information for benchmarking pur-
poses. Such information is often difficult to extract from
commercial products such as Aspen Chromatography (As-
penTech), Virtual Column (Dionex), Chrom Works (Ypso-
Facto), ChromX (GoSilico) and Chromulator (Ohio Uni-
versity). Finally, the major difference between ChromaT-
ech and CADET is the spatial discretization procedure,
enabling us to compare different strategies.

This paper is organized as follows: Section two presents
the pore and surface diffusion general rate model. In sec-
tion three, the numerical solution procedure used in Chro-
maTech is described and its implementation is compared
with CADET. Section four presents an analytical solution
technique which is used to validate correct implementation
of ChromaTech in section five. Additionally, section five
presents benchmark comparisons of ChromaTech against
CADET. Finally, concluding remarks are collected in sec-
tion six.

2. The chromatography model

In this section, the governing equations are given for the
pore and surface diffusion general rate model (Costa and
Rodrigues, 1985a,b; Ma et al., 1996; Schmidt-Traub et al.,
2012) with ion-exchange adsorption (Brooks and Cramer,
1992). The model accounts for axial mass transport by
forced convection and dispersion in the mobile phase per-
colating through the column, mass transport from the mo-
bile phase through the laminar boundary layer surround-
ing the porous column particles (beads) by film diffusion,
and mass transport inside the particle pore system by
pore and surface diffusion. A conceptual illustration of
the mass transport phenomena and the ion-exchange ad-
sorption process involved is given in Fig. 1.

2.1. Mass transport in the mobile phase

The mass balance for the mobile phase (the interstitial
column volume) is given by (Schmidt-Traub et al., 2012)

0Ci 6f, 3 .
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Figure 1: Conceptual illustration of the transport phenomena included in the pore and surface diffusion general rate model and of the
ion-exchange adsorption processes to ligands attached to the inside of the porous particles.

for all the components i € [0,N.]. Here, i = 0 represents
the salt component, and i = 1,..., N, represents N, pro-
teins. Moreover, ¢; and cp; are the (unbound) mobile
phase and pore phase concentrations, respectively, f; are
mobile phase convective-dispersive fluxes, v, is the in-
terstitial velocity, D.x is the axial dispersion coefficient,
F. = (1 —¢.)/e. is the column phase ratio, &. is the col-
umn porosity, R, is the radius of the porous particles,
Jji are fluxes from the mobile phase into the pore phase,
and kg1, ; are film mass transfer coefficients. Additionally,
z € Q, = [0,L] is the axial position in the axial domain
Q., L is the column length, 7 € [0, ) is the time variable,
r € Q. = [0,R,] is the position along the radius of the
porous particles in the radial domain Q,.

2.2. Mass transport in the pore phase
The mass balance for the pore phase (the pore volume)

is modelled as Fick’s diffusion in spherical coordinates
(Schmidt-Traub et al., 2012). It is given by

acpi aq;
(% Z’r’t)"'FpE(Z’r’t))

1 6 ) D 6Cp,i( t) D..F 6q,( [) (2)
= < |r i~ & T, + i - &7, )
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for all the components i € [0,N.]. Here, D,; and Dy;
are pore and surface diffusion coefficients, respectively,
F, = (1-¢,)/g, is the particle phase ratio, &, is the particle
porosity, go is the (bound) stationary phase concentration
of salt counter-ions, and ¢;, i = 1,..., N, are (bound) sta-

tionary phase concentrations of proteins.

2.3. Adsorption isotherm

Assuming that the stationary phase salt counter-ions

that are accessible for exchange g are monovalent, the

ion-exchange stoichiometric scheme is

Cpi ¥ Vigh S © qi+vicpo, Yi=1,...,N., (3)

where v; are characteristic charges of the adsorbing pro-
teins. The concentration of accessible salt counter-ions
are calculable from the electroneutrality condition

Ne
A:qSCC+Z(0'j+Vj)qj, (4)
=1

where A is the ionic capacity, and o; are the number of in-
accessible (shielded) binding sites due to the ith adsorbed
protein. The total salt concentration is

N,
qo=q8“+20jqj=wo. (5)
=1

The thermodynamic equilibrium constant K. for the sto-
ichiometric scheme Eq. (3) is defined in terms of concen-
trations by (Atkins and de Paula, 1998)

Vi
qi [ €po
Keq,[ = a ( SCC) ) (6)

where it is assumed that none of the involved components
contribute to non-ideal behaviour of the mixture. Combin-
ing Eqgs. (6) and (4) gives the steric-mass-action isotherm
(Brooks and Cramer, 1992)

N, q; Vi
_J] = w;, (7)

qi = cpiAi| 1 -
= Qmax,j

where A; = Keq,i (A/CP,O)W are initial isotherm slopes, and
Gmax,j = A/(0; +v;) are maximum binding capacities.



For dilute systems, the stationary phase concentrations
are much lower compared to the capacities, i.e. ¢; < gmax.i,
i=1,...,N.. Then, Eq. (7) simplifies for the ith compo-
nent to the linear isotherm

qgi ® CpiAi. (8)

2.4. Boundary conditions and initial values

To complete the model, appropriate boundary and ini-
tial conditions are specified. Danckwerts boundary condi-
tions (Danckwerts, 1953) are applied at the column inlet
and outlet. The inlet Robin conditions are given by

Ji®l.=o = VintCinj,i(H), Vi€ [0,N.], 9)
such that the injected fluxes vintcing(¢) are dispersed im-
mediately upon entering the column. For simplicity, a
rectangular injection profile can be assumed, i.e.

OSISlinj,

1> tinj, (10)
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for all the proteins i € [1,N,.]. Here, c¢; are protein feed
concentrations and t;,; is the injection time. The salt injec-
tion profile cinjo can be chosen to manipulate the equilib-
rium conditions in the column using e.g. step or gradient
profiles. Neumann conditions are used on the column out-

let P
Ziw| =0, Vie[o,N], (11)
0z

z=L

such that the concentration does not change after leaving
the column. At the particle surface, the following flux
boundary conditions are used:

9q;
+ Fsti _q(z’ t)
r=R Coor r=R,
’ (12)
Vie[0,N.].
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Due to symmetry, Neumann conditions are used at the
center of the particles, i.e.

=0, Vie[0O,N,]. (13)

60,, i
- (Z, t)
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The mobile phase concentrations representing a column
which is initially empty from proteins and equilibrated
with running salt buffer are given by

i@z =0, Vie[l,N,

€0(Dli=0 = Co,init

(14a)
(14b)

where cg it is the salt concentration of the buffer used to
equilibrate the column. Initial pore phase concentrations
representing particles that are equilibrated are given by

i@y =0, Viell,N], (15a)

(15b)

cpo(z, 7 )i,:o = C0,init -

Finally, the stationary phase concentrations for initially
equilibrated particles are

qi(Zs r)|z=0 = 07 Vie [1’ NC] )
C]O(Z, r)|1:0 =A )

(16a)
(16b)

such that the electroneutrality condition is fulfilled.

3. Numerical solution techniques used in ChromaTech

In this section, the numerical techniques used in Chro-
maTech to solve the chromatography model are given. A
method of lines approach is considered. The spatial dif-
ferential operators are discretized first resulting in a semi-
discrete system (discrete in space, continuous in time) of
differential algebraic equations to be integrated in time
from consistent initial conditions.

3.1. The standard nodal element

A standard nodal element (Hesthaven and Warburton,
2002, 2008) is constructed with reference region I = [-1, 1]
and reference variable £ € I. The core element-level opera-
tions are implemented on this standard element, such that
only one set of operators has to be stored.

The numerical approximation y, to the exact solution y
can be expressed through a polynomial dual interpolation
of the form

N, Np
YED 2 yE D =D 3Ol @ = D InOPyr@), (17)
m=1

m=1

which is valid provided that the grid nodes {fm}zp= , are
distinct. Here, ¥, are interpolatory expansion coefficients,
P,_ are orthonormal Legendre polynomials, and I, are
Lagrange interpolating polynomials defined in terms of the
N, distinct grid nodes &, with cardinal property 1,(¢,) =
Snm (6um 18 the Kronecker delta). The grid nodes {fn}flvi |
are chosen as the Legendre-Gauss-Lobatto quadrature (the
Fekete/Fejér) nodes since this set is near-optimal in terms
of the Lebesgue constant (Hesthaven, 1998) and includes
the interval boundaries.

The non-singular generalized Vandermonde matrix V
with elements V,,, = ~m_1(§,1) can be used to relate the
interpolatory expansion coefficients ¥,, to the nodal coeffi-
cients y(&,,) by

=y, (18)

where ;
i =[Ol 0l | (19)
is a vector of nodal coefficients, and

= [no,..om0], (20)

is a vector of interpolatory expansion coefficients. More-
over, it expresses the Lagrange interpolating polynomials
in terms of the orthonormal Legendre polynomials

V=P, (21)



where ;
1= [0@),....Ix,©)]" (22)

is a vector of Lagrange interpolating polynomials and

P=[Py©.....Py@)|" (23)

is a vector of orthonormal Legendre polynomials of order
at most N =N, - 1.

Choosing a nodal representation, the following matrices
are needed to design spectral methods

1

Mum = | LEL(&)dE, M= (VYT (24a)
-1
1 dlm

S = f 1LOTEOE =MD, (24b)

where orthonormality of the basis functions is exploited
instead of using a quadrature rule to calculate the inte-
grals. Here, M is the nodal mass matrix, S is the nodal
first-order stiffness matrix and the differentiation matrix
D has element values

dl,
Dm = —| . 25
3|, (25)
It is calculable as
dP,,_
D=VV", Viim = ! (26)
‘ ’ e g,

Moreover, the lifting matrix £ is introduced to compute
surface integrals,

L=M'E, &;=1U(-1), &Ea=1I1), (27)

where & is a zero matrix with &1 = 1 and Ey,» = 1 due
to the property (&) = Oum-
Alternatively, the interpolant y;, can be expressed as

N, Np
WED =Y W@l ) = D InPYAE),  (28)
m=1 m=1

where 13’(1?;21) are orthonormal Jacobi polynomials with
weight function w = (1 + &)?. Using this formulation, the
following matrices can be computed exactly by exploiting
the weighted orthonormality of the basis:

1
MO = f O+ £)7%de,

MO = ((V(0,2> ((V(o,z))T)‘l ’

(29a)

Yai, i
ﬂm):f—" —Z@)(1 + &)*d¢,
m 2 dg(f) @ @A +&)7dé (20b)

A0 = (D(O,Z))T M0 (©0.2)
)

leaving the implementation quadrature-free. Here, M©?
is a weighted nodal mass matrix, A®? is a weighted
nodal second-order stiffness matrix, V©? is a non-singular

generalized Vandermonde matrix with elements fo,?,;” =

13’(1?’_21) (¢,), and the differentiation matrix D©? is computed
using
; P2
02) _ /0.2 (a02))! 02 _ Yo
DOD = I (VOV) T YD = i (30)

n

Finally, the weighted lifting matrix £" is introduced as
L0 = (/\4“”2))_1 &. (31)

3.2. Spatial discretization in the axial direction

In this section, the axial differential operators in Eq.
(1) are discretized using a discontinuous Galerkin spectral
element method.

3.2.1. The computational domain

The computational domain Q, is divided into N, non-
overlapping axial elements Q’g, such that Q, = UkN:"l Q’;.
Each Qﬁ is mapped to the standard element by an affine

mapping
2(z-2f)
AZr

where Azt = zk — 2% is the element size of Q¥, X and z% are
the left and right edges of Q’z‘ , respectively, and zk =2/AZ
is Jacobian of the affine mapping.

&) = -1, (32)

3.2.2. General formulation

To apply the discontinuous Galerkin spectral element
method on second order differential operators, the ap-
proach of Bassi and Rebay (1997) is used. That is, Eq.
(1) is rewritten as an equivalent first order system to give
for the ith component

dc; Oh,; 3.

e 33
a o R’ (33)
Jc;
8= VDax o, (33b)
0z
where g; are gradient variables and h; = vipc; — VDaxgi are

mobile phase fluxes.

The starting point is to cast Eq. (33) in a finite-
dimensional weak form by multiplying (33) by test func-
tions v; € V;, integrating over the domain ., and finally
performing integration by parts. In spectral element meth-
ods, the approximate solutions c;; and g5 to the exact
functions ¢; and g;, respectively, are chosen to belong to
a finite-dimensional trial space Uj. The finite dimensional
spaces of trial U; and test V; functions are chosen to co-
incide according to the Galerkin method. To obtain a
discontinuous Galerkin method, these spaces are chosen
to be broken spaces. That is

Ne

N, 4
U=V D - Pamnlce ), o0
k=1

k=1



where the local finite dimensional spaces Vﬁ are populated
with Lagrange interpolating polynomials [, of degree at
most N¢ = Nj — 1 giving a nodal method.

Since Vj is a broken space, a strictly local finite-
dimensional weak form can be considered. It can be ex-
pressed for the ith component, and for the kth axial ele-
ment as follows: find uy, € Vk and g, € Vﬁ such that

66‘;” k (9k

Fdz= | hy—2dz - itk d
fgkc')t LhaZf(mnh,mZ

- F. —f Jnildz,
f gh,il];ndZ: - VDaxf Chi de

ng ng 8Z

+ /Dax f ficylk dz

a0k

for all Lagrange interpolating polynomials X, m =
L,...,N;. In Eq. (35), f is the outward pointing unit

normal, c’)Qf are the edges of Q’;, hpi = VineCni — \Dax8ni 18

(35a)

(35b)

an approximate solution to h;, jn; = kfim,i (c;”- - Ch’p~i|r—R )
=R,

is an approximate solution to j; and cyp; is an approxi-
mate solution to the pore phase concentration c,; defined
later in section 3.3.

As a consequence of the finite dimensional test space V;
being broken, the fluxes Ay, |an and Daxcp laﬂg are mul-
tiply defined on all axial element interfaces (Seé Fig. 2).
To obtain a unique and global solution, these are replaced
by the numerical flux functions A} |5qr and \/D_axc:‘ |5,Q§ , Te-
spectively, which depend on both the internal and external
axial element edge values. The numerical flux functions
are specified later in section 3.2.3.

The following weak form is obtained after replacing the
nonunique fluxes in Eq. (35) by uniquely defined numerical
fluxes:

dcn, ol
f Tl 4z —f B mdz—f anilk dz
QF 0z Ok

(36a)
—Fcif Jnilkdz
Rp lef o ’
bl
f gh,il]fndZ=—\/Daxf Ch,ia_;ndz
k k
= * (36b)

+ Dax f acltdz,
a0k

for all Lagrange interpolating polynomials X, m =
L...,N}.

It is assumed that the approximate solutions c,; and g,
can be represented on the kth element as

[ca(z,t>] z [chi<z,z>] :E] [ hall ”au} WE@,  (37)

gizD|  [&ni(z, 1) i (0|

NZ
where {z’,‘n}m"_ | is a set of axial grid nodes in the physical

element QF. Inserting Eq. (37) into (36) gives a system of

ordinary differential equations to recover the local solution
on the kth element as,

ack . 3
hii k Aq-1 QT pk +k
——— =9I M 'S h,,—F.—J,.
a =~ ni = TeR, Jhi (38)
- jzk‘gﬁh;k |aﬂk )
ghi =~ VDaxTIM ' S" ),
. (38b)
+ VD&XJZLﬁCT |(ijlz< 5
where
’ T
=@l eni® | (39)
L 4 N
is a vector of nodal mobile phase concentrations,
’ T
A RUNTC) I ()] T (40)
| 7 o
is a vector of nodal mobile phase fluxes,
r T
j@=nmuwwmmh], (41)

is a vector of nodal fluxes from the mobile phase into the
pore phase, and

T
%;Fm%Ww&wml, (42)
1 N
is a vector of nodal gradient variables.

{{Ch,i}}‘aglzc_L O

Chi

Ok

Figure 2: A discontinuous Galerkin interface with notation given for
the left interface on the kth axial element with k =2,...,N,—1. Note
that two radial elements are associated with each interface. 6Q§L is

the left interface of the kth element and {)le‘;al is the right interface
of the k — 1th element.

3.2.3.

To complete the scheme, suitable numerical fluxes must
be specified. The notation

N =050°+y°), [l =(a°

is used for the average and jump at boundary interfaces
A0k, respectively (see Fig. 2). In Eq. (43), the super-
scripts © and @ denote the interior and exterior boundary
values, respectively.

Numerical fluxes

W +A%F), (43)



The numerical flux 47 is composed of a convective and
a diffusive part, i.e.

h = h?conv + hzdiff ’ (44)

where
hfconv Vintcr" (Cf,i’ Ciii) , (453,)
1 g = — VDaxg} (85 85,) - (45b)

The convective part of the flux is for the ith component
approximated by a Lax-Friedrichs flux

h;kconv Vint {{Ch,i}} +0.5vint [[Ch,i]] ’ (46)

which simplifies to an upwind flux due to linearity of the
convective flux. For the diffusive flux, an internal penalty
flux (Douglas and Dupont, 1976; Douglas et al., 2002) is

chosen
ldlff \/7( {ght} -7 Chl]]) 5 (47)

where 7 is a penalizing constant to control jumps in the
solution of C];, .+ It is chosen using the following scaling

_(WYy?
=

(48)

where a central flux is obtained by specifying 7 = 0.
Finally, the numerical flux +/Dgyc] is specified for the
ith component as the central flux

Daxc} = \Dax {lenil} (49)

such that gi’i can be eliminated locally in Eq. (38).

3.2.4. Boundary conditions
The boundary conditions are imposed weakly through
the numerical fluxes by exploiting a symmetry principle.
The inlet Robin condition Eq. (9) is imposed for the
ith component by specifying the external convective flux
at the column inlet z =0 as

Vint Cii(t)|0 = WintCinj,i(f) = Vint Cf,i(t)i() (50)
= Vit {eni®OWy = VintCing.i(0) ,

and the external diffusive flux as

\/Bax,i g?i,»(f)|0 == \/Bax,i gi?,i(t)|()

51
4 \/Bax)i {{gh,i(t)}}io =0 ( )

such that the convective-dispersive mobile phase flux
equals the inlet flux on average.

The outlet Neumann condition Eq. (11) is implemented
for the ith component by defining the external convective
flux on the column outlet at z = L as

= Vint Cii(t)|L

= Vint {{Ch,i(t)}}|L

&
Vint € ,'(t)
h, |L (52)

— (S}
= Vint Ch,i|L )

such that it is unmodified and the external diffusive flux
as

VDo g5,(1)], = = VDaxi 83,0,

53
= \/Bax,i {{gh,i(t)}”L - ( )

such that it is zero on average.
Since the boundary conditions are imposed through the
numerical flux 4], the external fluxes required to compute

VDaxc; on the domain end points are specified such that
the solution is unmodified. That gives for the ith compo-
nent

VDo 1),
= VDayi {{eni®}, =
‘/Baxi Chi| = \/B"in Chi|
= VDui {{eni®})], =

= \/Baxi cieli|() (54 )
a
\/_‘I.X,i c;el,,‘(t)|0 )

\/_ax,i cii(t)|L

3.3. Spatial discretization in the radial direction

In this section, the radial differential operators in Eq.
(2) are discretized using a discontinuous Galerkin spectral
method.

3.3.1. Computational domain

The computational domain Q, is composed of a single
radial element. The domain Q, is mapped to the standard
element by an affine mapping

2r
(r)==—-1, 55
6= 1 (5)
where J, = 2/R,, is the Jacobian of the affine mapping.
3.3.2. General formulation
The finite-dimensional weak formulation for the pore
phase concentrations takes the following form for the ith

component and the kth axial element: Find ¢;,;; € V and
gni € Y}, such that

0 i i
f f ( Chp 6Qh, )I’Zlm(r)drlﬁ(z)dz
. P
f f ( aChpt
Qk

Do, 201 200 4k g (56)
or or
o S 1l
QI‘ 0Q,
0qn,i
+ DB,FP%) zlm(r)drl’,;(z)dz,

for all Lagrange interpolating polynomials [,(r), m =
l,...,N; and lﬁ(z), n= 1,...,N[Z,. Here, 0Q, are edges of
the radial domain Q,, g,; are approximate solutions to ¢;,



and the finite dimensional space of test functions V! con-
sists of Lagrange interpolating polynomials 1,(r) of order

at most N" =N, — 1 and I¥(z) of order at most N7, i.e.

A

V2=€Bspan{l Of} ® span {1, of,}

k=1

It is assumed that the approximate solutions cyp; and

qn; can be represented on the kth axial element as
Cp,i(za r, t) ~ Ch,p,i (Z7 r, t)
qn,i(z, 1,1) qn.i(z,1,1)

I
P [C]1,P,i(t)|(zf‘n"m

) (58)
= Z Z il )

>] ACIGIMCAGR

n=1 m=1
where {rm}Z‘i , is a set of radial grid nodes in the physical
element Q,.

Inserting Eq. (58) and the boundary condi-

tions (12) and (13) into (56) gives the following system of
ordinary differential equations

k.n
ok
h.pi 2 0,2 0,2 k, k,
= =T (M N ACD (Dt + Dy F gt
(59)
+J, EL(O’Z)
.]l/gp
for all axial grid nodes zX, n=1,... ,N;,. Here,
A [0 PR C5 P I (10
i
is a vector of nodal pore phase concentrations, and
k,
4 = a0l oo anoly, | (61)
P

is a vector of nodal stationary phase concentrations.

3.4. Discretization of the stationary phase concentrations

The finite-dimensional weak formulation for the station-
ary phase concentrations takes the following form for the
ith component and the kth axial element: Find ¢y p; € V}
and gp; € V} such that

f f Gniln(r)drli(2)dz = f f wp ily(r)drl,(z)dz, (62)
ot Ja, ot Ja,

for all Lagrange interpolating polynomials 1,(r),

r k —
1,...,Np and [;(z), n = 1,...,N]Z). Here,

N, Vi
>

b
‘a1 dmax,j
are approximations to the isotherm functions w; and Ay; =

Keq,i (A/ch,p,o)w are approximations to the initial isotherm
slopes A;.

Whi = ChpiAp, [1 - (63)

(57)

It is assumed that the approximate isotherm functions
wp,; can be represented on the kth axial element as

wi(zv r, t) ~ Wh, i(Z>r t)

- Z Z wh'(t)|z T

n=1 m=

0 (@) b (&) -

Note that such an interpolation can introduce aliasing er-
rors on coarse grids since w; is a non-linear function. These
errors can be reduced without increasing the discrete prob-
lem size by using e.g. spectral filtering or over-integration
techniques at increased computational cost (Gassner and
Beck, 2013; Engsig-Karup et al., 2016). In this work, it is
accepted that aliasing errors might occur on coarse grids
and they are removed by increasing the grid resolution if
necessary.

Inserting Eq. (64) into (62) gives a set of algebraic con-
straints

9 =l (65)
for all axial grid nodes zX, n=1,... ,N;. In Eq. (65),
wﬁ? = [U)h,i(t)lzﬁ’rl seees wh,i(f)Lﬁ,,N,_] ; (66)

is a vector of nodal isotherm functions.

four component system (N, =4, N, =5, N =1, N =1)

triangles and red circles represent static and dynamic dependencies
respectively.
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Figure 3: Sparsity pattern for the matrix dF/du in Eq. (71) for a

. The blue

3.5. Temporal discretization

In this section, the time-integration of the system of

differential algebraic equations obtained after spatial dis-
cretization is described.



3.5.1. The residual formulation
The semi-discrete system of differential algebraic equa-
tions is advanced in time in fully implicit form:

Ft,u,u')=0, ul_g=uy, u|_,=uj, (67)

t=0

T z N .
where u = [ch, Cphs qh] € RNNNGHINNNIN, ig the state vec-

tor with ¢, € RYNNo ¢, , € RNNNN, and g, € RVNNNy |
ug contains the initial conditions, and #’ contains the time
derivative of the state vector.

Eq. (67) is advanced in time using the implicit
differential-algebraic (IDA) solver from the suite of non-
linear and differential-algebraic equation solvers (SUNDI-
ALS) (Hindmarsh et al., 2005). While implicit-explicit
operator splitting is useful in special cases (Meyer et al.,
2018a), IDA uses a more generally applicable variable-
order variable-coefficient backward differentiation formula
in fixed-leading-form (Brenan et al., 1996) to represent the
temporal operator, i.e.

Ny
u; = All_l Z l//l,,,ul,n s (68)
n=0

where u; = u'|, and u;_, = ul,_,p,, [ is the current time
step index, At is the current time step length, N, € [1,5]
is the order of the method and ¢, are coefficients uniquely
determined by the order and the history of the time step
sizes. IDA uses an internal strategy to adaptively change
the time step length, the order of the method, and the
corresponding coefficients. Combining Eqgs. (67) and (68)
results in the following nonlinear algebraic system to be
solved at each time step:

N‘I
Gu)) = F[t;,ul, Aty lp,,nu,_n] =0. (69)

n=0

Eq. (69) is solved using modified Newton iterations. In
each modified Newton iteration, a linear system of the fol-
lowing form is solved:

Tl —ull = -Gl (70)
where p is the current Newton iteration. In Eq. (70), J is
an approximation to the system Jacobian

_dG _dF _ dF
T du du du’’

where ¢ = ¢;0/At;. IDA uses an internal strategy to adap-
tively update the Jacobian when required.

(71)

3.5.2. Computing the Jacobian
The Jacobian Eq. (71) is derived by hand and computed
analytically. Fig. 3 shows a sparsity pattern S of the
Jacobian dF/du for a four component system (N, = 4,
N¢ =1, N" =1). The sparsity pattern is defined such that
¢ {1, if (dF [du)m # 0,

nm — 07

. (72)
otherwise .

The discontinuous Galerkin spectral element method is a
linear discretization method. Therefore, the dependencies
on Egs. (38) and (59) result in static entries in the Jaco-
bian. These entries are pre-computed and reused in every
Jacobian update. The entries due to the non-linear steric-
mass-action isotherm Eq. (65) are dynamically changing
and have to be re-computed each time the Jacobian is up-
dated.

The Jacobian dF/du’ is fully static and is pre-computed
and reused in every Jacobian update.

3.5.3. Consistent initial conditions

The time derivative of the initial state uy must be con-
sistent with uo for the chosen inlet conditions cjuj;
Yi=0,...,N,..

Choosing the initial states ug as described in section 2.4
ensures that the algebraic constraints are satisfied. Using
these initial states, a consistent state derivative u’ can be
computed from Eq. (67) by evaluating it at the initial time
point ¢ = 0.

=0’

3.6. Implementation details

ChromaTech has been implemented in C++ for per-
formance. To enable cross-platform compatibility, the
CMake build system (CMake, 2019) is used. It allows
the development of build scripts, that simplify the con-
figuration and installation procedure. The code is com-
piled with the LLVM 9.0.0 compiler using the Clang front-
end (LLVM, 2019). IDA 4.1 is built using sequential
operations, since the overhead of using a parallel imple-
mentation is too large for the relatively small systems
solved here. The generic SUNDIALS modules NVEC-
TOR, SUNMatrix and SUNLinearSolve have been over-
ridden using custom implementations based on Eigen 3.3.7
(Gaél et al., 2010), a C++ template library for linear al-
gebra, matrices and vectors. Sparse matrices are stored
in compressed column major order, and dense matrices
in column-major order. Linear systems are solved using
Eigen’s sparse supernodal LU factorization, a general pur-
pose library for the solution of large, sparse, nonsymmetric
systems of linear equations. Other linear solvers includ-
ing a direct shared-memory parallelized supernode-based
LU-factorization (Demmel et al., 1999a,b) have also been
tested. However, the parallelization of the decomposition
method was not beneficial for the relatively small linear
systems solved in this work (results are not shown).

3.7. Differences in ChromaTech compared to CADET

Both ChromaTech and CADET are based on a method
of lines approach. CADET uses a second (low) order accu-
rate finite volume method for spatial discretization both in
the axial and radial directions leading to a relatively large
state vector u. In comparison, the state vector u obtained
by ChromaTech has a much smaller dimension due to its
spectral engine.
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Figure 4: Mobile phase concentrations shown over axial column po-
sitions at the final simulation time #; = 250 min for the validation
case (section 5.1). The model parameters taken from Qamar et al.
(2014) are given in Table 1.

ChromaTech advances the semi-discrete scheme in time
using IDA which is similar to CADET. ChromaTech uses
a modified Newton’s method to solve the nonlinear sys-
tem Eq. (69). That is, the Jacobian Eq. (71) is formed
and factorized adaptively and not at every iteration using
IDA’s internal strategy as mentioned previously in sec-
tion 3.5.1. In comparison, CADET uses a full Newton’s
method where the Jacobian is formed and decomposed in
every Newton iteration. Forming the Jacobian matrix in
every iteration speeds up the nonlinear solution procedure
such that less Newton iterations are required to meet the
tolerance. However, the Jacobian matrix has to be formed
and factorized often which can be costly. The impact of
this trade-off on computational efficiency is problem de-
pendent.

Due to the different dimensions of the state vector u,
different strategies for solving the linear system Eq. (70)
are employed. ChromaTech solves the linear system Eq.
(70) using a direct method, since its dimension is small.
In comparison, CADET splits the Jacobian Eq. (71) into
smaller subsystems by domain decomposition. Here, ad-
ditional algebraic constraints are introduced to link the
subsystems. Then, the linear subsystems can be solved
independently in parallel (details are given by von Lieres
and Andersson (2010)). Due to the efficiency of this strat-
egy for solving linear systems, it is beneficial to use a full
Newton’s method in CADET.

10

4. Analytical solution technique

Analytical solutions have been derived for single-
component chromatography models including pores, lin-
ear adsorption and no axial dispersion (Rosen model) but
lacking a closed-form solution (Rodrigues, 1984). How-
ever, there is no closed-form analytical solution known to
us in the time-domain for the single component general
rate model presented in this work. Therefore, an analyti-
cal solution in the Laplace domain is used (Qamar et al.,
2014; Miyabe, 2014; Leweke and von Lieres, 2016). The
mobile phase concentration ¢ in the Laplace domain ¢ is

(s, 2) = Em(S)ﬁl—((sS)) exp (A1()z)

Ba(s)
Ein(s)

where s is the complex Laplace frequency, and ¢;(s) is
an inlet function in the Laplace domain. Moreover, the
functions Ay, A, B; and B, are given by e.g. Leweke and
von Lieres (2016).

The open source software package CADET-semi-
analytic (Leweke and von Lieres, 2016) is used to invert
Eq. (73) numerically. It supports arbitrary precision
arithmetics to minimize the impact of round-off errors and
gives solutions that satisfy a proven error bound at the ax-
ial column end position, z = L (see Leweke and von Lieres
(2016) for details). Note that CADET-semi-analytic can-
not be used to obtain accurate solutions at and in the
neighbourhood of the column inlet position z = 0 since the
solution has a pole here.

(73)

+ Ein(s) exp (A2(5)2) ,

5. Numerical case studies

In this section, three cases are considered to validate
and test the performance of ChromaTech.

All computations are conducted on a MacBook Pro
(Early 2015) equipped with a dual core 2.7 GHz Intel Core
i5 processor, 8 GB 1867 MHz DDR3 RAM and a 64-bit OS
X operating system.

CADET 4.0.0 is used as a performance benchmark. It
is build for OS X using a GNU 9.1 compiler with depen-
dencies: IDA 3.1.2, Intel(R)’s Math Kernel Library version
2019.1.3, and Intel(R)’s Threading Building Blocks 2019.0.

5.1. Case 1: Validation of ChromaTech

The purpose of this case is to validate that ChromaT-
ech’s engine is correctly implemented. Here, a simple case
is studied where a one-component feed mixture is injected
at the column inlet under linear adsorption conditions.

The model problem is taken from Qamar et al. (2014)
and modified such that it is easier to demonstrate correct
implementation of ChromaTech. The detailed simulation
parameters are given in Table 1. The column length has
been modified from 1.7 cm to 10 cm while maintaining the
same dispersion coefficient. For computational reasons, it



Table 1: Simulation parameters taken from Qamar et al. (2014). They are used in the validation case with a single component (section 5.1)

Parameters Symbol  Values Unit
Components N, 1 -
Column porosity & 0.4 -

Particle porosity &p 0.333 -

Particle radius R, 0.004 cm

Film diffusion coefficient Kgiim.1 0.01 cmmin~!
Interstitial velocity Vint 0.1 cmmin™!
Axial dispersion coefficient Dy 0.002 cm? min~!
Pore diffusion coefficient Dy 6.3845-10° cm?min™!
Surface diffusion coefficient  Ds 0 cm’ min™!
Initial isotherm slope A 2.5 -

Feed concentration e 1 gl!

Table 2: Mobile phase errors measured in the continuous Lxléz' (g17'cm), Léz— (g1"! vem), and LS -norms (217!) and corresponding convergence

rates for the validation case (see fully resolved simulation in Fig. 4). The polynomial order in the radial direction Ny, and the time integration
tolerances was chosen carefully not to affect the accuracy of the simulations.

N N, Lg-error L} -error Ly -error L} -order L} -order Lg-order Theor.

1 128 1.24E-04 1.30E-04 8.54E-05 - - - 2
256  2.74E-05 2.76E-05 1.83E-05 2.18 2.23 2.22
512 6.34E-06 6.28E-06 4.18E-06 2.11 2.14 2.13
1024 1.52E-06 1.49E-06 9.94E-07 2.06 2.07 2.07

2 64 8.64E-06 5.10E-06 3.64E-06 - - - 3
128 9.27E-07 5.74E-07 4.06E-07 3.22 3.15 3.17
256  1.13E-07 6.81E-08 4.81E-08 3.03 3.07 3.08
512 1.47E-08 8.20E-09 5.89E-09 2.95 3.05 3.03

3 64 4.35E-07 2.59E-07 1.79E-07 - - - 4
128 2.45E-08 1.79E-08 1.24E-08 4.15 3.86 3.86
256  1.43E-09 1.14E-09 7.89E-10 4.10 3.97 3.97
512 8.85E-11 7.08E-11 4.91E-11 4.01 4.01 4.01

4 32 2.82E-07 1.50E-07 1.08E-07 - - - 5
64 7.87TE-09 4.18E-09 2.98E-09 5.16 5.17 5.18
128 2.64E-10 1.24E-10 &8.86E-11 4.9 5.08 5.07
256  9.21E-12 3.79E-12 2.74E-12 4.84 5.03 5.02

is beneficial to use a long column, since convergence rates
are to be determined over the spatial domain. To obtain
a smooth solution profile, a slow interstitial velocity of
ving = 0.1 is specified. Due to smoothness of the solution
profile, convergence rates from numerical experiments can
be expected to be in agreement with theoretical ones, pro-
viding a condition to verify that the code is working as
expected. The feed mixture is injected for 2 min into an
empty column, and the final simulation time is specified
as ty = 250 min. The injection profile is assumed to be
rectangular. A high-precision simulation is shown in Fig.
4 obtained using ChromaTech (N? = 20, N° = 10, N" = 15).

A reference solution u.es is computed using CADET-
semi-analytic. To avoid round-off errors in the computa-
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tions, 100 decimal digit precision is specified. Moreover, a
proven error in the sup-Norm of Eges = 1x107%0 is specified.
This error bound is proven only at the column end position
z = L. As previously mentioned in section 4, CADET-
semi-analytic is unable to produce an accurate solution
at and in the neighbourhood of the column inlet position
z = 0. Thus, an accurate reference can be obtained only
in part of the domain Q, = [0, 10], i.e. in [3, 10]. The vali-
dation case has been designed such that the concentration
c1(z) is equal to zero in double precision for z € [0,3] at
the final simulation time 7y = 250 min (see fully resolved
simulation in Fig. 4). Thus, the reference solution ¢} yef(z)
is set equal to zero for z € [0, 3].

In the following, simulated mobile phase concentrations
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Figure 5: L), -errors due to (a) axial and (b) radial approximation errors of the mobile phase concentration as a function of (a) axial degrees-

of-freedom and (b) radial polynomial order used within each radial single-element domain for the validation case (see Fig. 4). Results are
shown in (a) logarithmic and (b) base-10 scale with data given in Table 2.

are compared with the reference over the spatial domain
Q.. Convergence rates are computed numerically by com-
paring simulations obtained using different grid resolutions
with the reference.

The approximation errors due to the axial operators are
investigated first. Polynomials of order N = 10 are used
to discretize the radial operators on all axial grid nodes,
such that radial approximation errors do not affect the
accuracy of the simulations. Moreover, the relative and
absolute tolerance of IDA are chosen as 1 x 1072 and 1 x
1074, respectively, to ensure negligible errors due to the
time discretization. Then, the discrepancies between the
simulations and the reference solution are expected to be
caused by axial approximation errors only. That is until
other sources of errors start to influence the results, e.g.
round-off errors due to double precision arithmetics.

Fig. 5(a) shows comparisons of simulations with the
reference measured in the continuous L}L—norm for differ-
ent axial grid resolutions. The axial grid resolution is in-
creased by the number of elements NZ for fixed polynomial
orders N° € {l,...,4}. The resulting L}L-errors are dis-
played against the grid resolution on a logarithmic plot.
The slopes (convergence orders) of each of the linear seg-
ments in Fig. 5(a) are listed in Table 2. Additionally, it
lists the continuous Lé’—, and Lg’z—errors. In these numer-
ical experiments, the L}zf and Léz—errors are evaluated
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using the mass matrix Eq. (24a) based on a sufficient
number of Legendre-Gauss-Lobatto quadrature nodes to
ensure negligible integration errors. From Fig. 5(a) and
Table 2, it is evident that the convergence rates are of order
N*+1. This is in agreement with theoretical expected ones,
validating that the procedure for spatial discretization in
the axial direction is correctly implemented. Moreover, it
demonstrates, that IDA, CADET-semi-analytic, and the
radial discretization procedure are working as expected.

The properties of the radial discretization procedure are
investigated next. Here, 20 axial elements are used with
10th order polynomials in each axial element (N: = 20,
N¢* = 10), to ensure that errors due to discretization of
the axial operators are negligible. Fig. 5(b) shows the
L;)Z—errors evaluated for different radial grid resolutions in
a semi-logarithmic plot. The results demonstrate, that
a rapid exponential convergence rate is obtained as the
polynomial order is increased, i.e. spectral convergence is
achieved in each radial single-element associated with the
axial grid nodes.

5.2. Case 2: Performance benchmark using low load vol-
ume
Having successfully tested that ChromaTech’s spectral
engine is correctly implemented, a less simple problem is
considered. The purpose of this case is to test the perfor-
mance of ChromaTech by benchmarking against CADET.
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Figure 6: Mobile phase concentrations at the column outlet of (a) proteins and (b) salt as a function of time (chromatograms) for the
performance benchmark using low load volume (section 5.2). The model parameters taken from Piittmann et al. (2013) are given in Table 3.

Table 3: Simulation parameters taken from Piittmann et al. (2013) that are used in the performance benchmark with lysozyme, cytochrome
¢ and ribonuclease A (section 5.2).

The problem considered is taken from Piittmann et al.

Parameters Symbol  Values Unit
Components N. 4 -
Column length L 1.4 cm
Particle radius R, 0.0045 cm
Column porosity & 0.37 -
Particle porosity &p 0.75 -

Film diffusion coefficients kaim [6.9,6.9,6.9,6.9]T - 10°° ms”!
Interstitial velocity Vint 5.75-107* ms™!
Axial dispersion coefficients D,y 5.75-1078 m?s~!
Initial salt concentration C0.init 50 mol m~3
Injection concentration cr [-,1,1,1]7 mol m~3
Injection time finj 10 S

Pore diffusion coefficients D, [70,6.07,6.07,6.07]T - 1071 m?s~!
Surface diffusion coefficients D, [0,0,0,0]7 m?s!
Tonic capacity A 1200 mol m™3
Thermodynamic equilibrium constants — Keq [-,7.7,35.5,1.59]T - 1073 -
Characteristic charges v [-,3.7,4.7,5.29]7 -
Shielding factors o [-,10,11.83,10.6]T -

(2013). The goal is to separate a three-component protein
feed mixture consisting of lysozyme, cytochrome c, and ri-
bonuclease A. A chromatography column packed with a
sulphopropyl Sepharose fast flow strong cation exchange
resin is used for the separation. The steric-mass-action
isotherm is used to describe the non-linear adsorption pro-
cess. The detailed model parameters are listed in Table 3.
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Here, it is assumed that surface diffusion is negligible, i.e.
D;; =0,V¥i=0,...,N.. Note that the injection time #y; is
only 10 s leading to linear adsorption dynamics.

The column is initially equilibrated with running salt
buffer with an initial salt concentration cginit equal to 50
mol m™3. The three proteins are loaded onto the column for
10 s, each with a concentration of 1 molm™, at a constant
salt concentration of 50 molm™. It is assumed that the
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Figure 7: The L}zl—error against computational work in (a) discrete problem size and (b) computational cost measured in wall clock time for

the performance benchmark using low load volume (section 5.2). The results are shown in logarithmic scale.

Table 4: Discrete problem size required to obtain low-, engineering-
and high-precision simulations with ChromaTech and CADET for
the performance benchmark using low load volume (section 5.2). The
data is the length of the state-vector u and is visualized in Fig. 7.

Precision ChromaTech CADET Reduction
Low 352 10560 x30
Engineering 704 41600 %59

High 1360 165120 x121

injection profile is rectangular. The column is then washed
for 80 s using the same inlet buffer, but without proteins
in the feed. Finally, the bound proteins are eluted using
a linear salt gradient from 90 s to 1500 s starting at 100
mol m~ with a slope of 0.2 m* mol™!.

Since no analytical solutions are available for non-linear
chromatography models, a high-precision reference solu-
tion u..s has to be relied on for comparisons. The refer-
ence solution is computed using ChromaTech (N: = 20,
N¢ =10, N" =20). Fig. 6(a) and (b) shows high-precision
chromatograms for proteins and salt, respectively.

In the following, mobile phase concentrations at the col-
umn outlet are compared with the reference over the time
domain €; = [0,#;]. The approximation errors are mea-
sured in the continuous Lgll—norm and are computed using
Simpson’s rule with 1500 equidistant time points for each
component to ensure negligible integration errors. The rel-
ative and absolute time integration tolerances are specified
as 1x107® and 1x 1078, respectively, for both ChromaTech
and CADET. These tolerances are sufficient for engineer-
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Table 5: Computational cost required to obtain low-, engineering-
and high-precision simulations with ChromaTech and CADET for
the performance benchmark using low load volume (section 5.2) on
a single CPU thread. The data is wall clock times (s) and is visualized
in Fig. 7.

Precision ChromaTech CADET speed-up
Low 0.36 7.76 x21
Engineering 0.64 32.66 x5l

High 1.28 143.46 x111

ing purposes. Then, the quality of the simulations can be
controlled by modifying the spatial discretization param-
eters only.

The quality of the simulations are classified in three
categories: low-precision, engineering-precision, and high-
precision. Here, a simulation quality of low-precision and
engineering-precision indicates that the simulation is vi-
sually distinguishable and indistinguishable from the ref-
erence solution, respectively. A high-precision simulation
quality indicates that the spatial approximation errors ap-
proaches a similar magnitude as the temporal errors for the
chosen relative and absolute time integration tolerances,
although the spatial approximation errors are still larger at
this quality level. It can be beneficial to use low-precision
simulations during initial studies with the model to reduce
labour-time by performing rapid simulations. However, if
low-accuracy simulations are used e.g. for model calibra-
tion, the model parameters cannot be trusted since they
will be lumped with numerical dispersion. Instead, a sim-



Table 6: Simulation parameters taken from von Lieres and Andersson (2010) that are used in the performance benchmark with native and

Cyb5-labeled lysozyme (section 5.3).

Parameters Symbol  Values Unit
Components N, 3 -
Column length L 1.3 m
Particle radius R, 45-107° m
Column porosity & 0.70 -
Particle porosity &p 0.60 -

Film diffusion coefficients kaim [1075,1075,107°]7 - 107 ms™!
Interstitial velocity Vint 0.003 ms™!
Axial dispersion coefficients D, 0.001 m?s!
Initial salt concentration C0.init 94.2 molm™3
Injection concentration cs [—,0.143,0.00143]7 molm™3
Injection time Linj 5000 s

Pore diffusion coefficients D, [70,4.0,4.0]7 - 10711 m?s~!
Surface diffusion coefficients D, [0,0,0,0]7 m?s!
Tonic capacity A 1200 mol m™>
Thermodynamic equilibrium constants — Keq [-,0.0355,0.0611]7 - 1073 -
Characteristic charges v [-,4.7,3.93]7 -
Shielding factors o [-,11.83,11.83]T -

Table 7: Discrete problem size required to obtain low-, engineering-
and high-precision simulations with ChromaTech and CADET for
the performance benchmark using high load volume (section 5.3).
The data is the length of the state-vector u and is visualized in Fig.
10.

Precision ChromaTech CADET Reduction
Low 810 33024 x41
Engineering 2064 131584 x64

High 2580 525312 x204

ulation quality of at least engineering-precision should be
considered for such purposes.

Using ChromaTech, the quality of the simulation is im-
proved by increasing the number of elements N for fixed
axial polynomial orders N* € {3,4}. The radial polynomial
order N" is varied such that axial approximation errors are
dominating over the radial errors, i.e. radial polynomial
orders N € {6,...,12} are used depending on the accu-
racy of the axial discretization. When using CADET, the
spatial discretization parameters available to control the
quality of the simulation are the number of finite volume
elements in the mobile N: and pore N, phases. A fixed
ratio of NZ = 2k, N! = 21k =4,...,9 is used in the
following since it gives the best performance on this case
(results are not shown).

Fig. 7(a) shows the comparisons of both codes in terms
of discrete problem size with the data summarized in Ta-
ble. 4. The comparisons shows, that ChromaTech is able
to reduce the discrete problem size compared to CADET
by a factor of xX30, x59, and X121, when a simulation qual-
ity of low-, engineering- and high-precision is required, re-
spectively.
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Table 8: Computational cost required to obtain low-, engineering-
and high-precision simulations with ChromaTech and CADET for
the performance benchmark using high load volume (section 5.3) on
a single CPU thread. The data is wall clock times (s) and is visualized
in Fig. 10.

Precision ChromaTech CADET speed-up
Low 1.52 34.49 x23
Engineering 4.52 158.10 X35
High 6.40 710.68 x111

Although the convergence properties of the spectral en-
gine used within ChromaTech are impressive, it is often
the computational cost which is the decisive criterion for
choosing between different simulation strategies. In Fig.
7(b), the results of the comparisons between the two codes,
in terms of the computational cost measured in wall clock
time, are shown. Here, CADET has been used with mul-
tiple CPU threads, taking advantage of its parallel im-
plementation, to reduce compute time. ChromaTech has
been implemented on a single CPU core, and a full paral-
lelization strategy is beyond the scope of this work. The
two codes are compared on a single CPU core to pro-
vide the most fair basis for comparing the efficiency of the
methods applied, instead of their implementation. The re-
sults of the comparisons are summarized in Table 5. They
demonstrate, that ChromaTech can reduce the compute
time by a factor of x21, x51 and x111, to achieve sim-
ulations of low-, engineering- and high-precision quality,
respectively.

Comparing Tables 4 and 5 shows, that the compute

times scales linearly with the discrete problem size for
CADET. This indicates that the finite volume method
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Figure 9: Pore phase (a)-(c) and stationary phase (d)-(f) concentrations of salt, native lysozyme and Cy5-labeled lysozyme as a function of
time and radial column position inside a bead at an axial column position of z = 0.58. The z-axis is concentration (mol m™3), the x-axis is time
(s) and the y-axis is radial column position (m). The model parameters taken from von Lieres and Andersson (2010) are given in Table 3.

implemented in CADET is dedicated and highly efficient.
That is a result of solving linear systems by a domain de-
composition method as previously discussed in section 3.7.

5.3. Case 3: Performance benchmark for high load volume

The last case considered is the hardest and most de-
manding to solve due to the presence of very steep con-
centration fronts resulting from non-linear adsorption dy-

namics. The purpose is to demonstrate, that ChromaT-
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the performance benchmark using high load volume (section 5.3). The results are shown in logarithmic scale.

ech is stable and to measure its performance by comparing
against CADET.

The case is taken from von Lieres and Andersson (2010)
with detailed model parameters listed in Table 6. The
goal is to separate a two component feed mixture of na-
tive lysozyme and Cyb-labeled lysozyme. Note that the
feed concentration of Cy5b-labeled lysozyme is one hun-
dred times lower than native lysozyme. Moreover, the feed
mixture is injected at the column inlet for a long time of
tinj = 5000 s giving rise to non-linear adsorption dynamics.
The feed mixture is loaded onto a column that has been
pre-equilibrated with running salt buffer with concentra-
tion cg init = 94.2 mol m™>. This salt concentration is main-
tained during the entire numerical experiment. Moreover,
surface diffusion is assumed to be negligible, i.e. Dy; =0,
Yi=0,...,N,.

Fig. 8 shows a simulation of the mobile phase concentra-
tions over time for all axial column positions. Notice the
sharp concentration fronts in the salt profile in Fig. 8(a)
and the concentration overshoots of Cy5-labeled lysozyme
in (c).

A simulation of the pore phase and stationary phase
concentrations for a representative bead at an axial col-
umn position of z = 0.58 cm is shown in Fig. 9. The
concentrations are shown over time for all radial column
positions. As in the mobile phase, the salt concentration
profile is steep within the pore phase. Moreover, concen-
tration overshoots are observed inside the pore and sta-
tionary phases for Cy5-labeled lysozyme.

The observed concentration overshoots are a conse-
quence of competitive binding between native and labeled
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lysozyme. Such concentration overshoots inside chro-
matography beads have also been experimentally observed
(Teske et al., 2006).

The simulation results demonstrate, that ChromaTech
can simulate non-linear chromatographic processes with
steep concentration fronts without compromising stability.
That is because the discontinuous Galerkin method has
strong build-in stability properties (Hesthaven and War-
burton, 2008).

The performance of ChromaTech is tested by bench-
marking against CADET. A high-precision reference solu-
tion uyet is obtained using ChromaTech (N? = 10, N* = 10,
N" = 35). Simulations are obtained with ChromaTech
using discretization parameters N° € {3,4}, N € {2,4},
N" € {10,20}. For CADET, a ratio between finite volume
elements in the mobile and pore phases of NZ = 2%, N7 = 2K,
k=5,...,9 is used since its gives the best performance on
this case (results are not shown). Both ChromaTech and
CADET are run with absolute and relative time integra-
tion tolerances of 107% and 1078, respectively.

Fig. 10 and Tables 7 and 8 summarize the results of
the comparisons. The results demonstrate, that Chro-
maTech can reduce the discrete problem size by a fac-
tor of x41, x64, X204 when a simulation quality of low-,
engineering- and high-precision is required, respectively.
Moreover, ChromaTech can compute with a factor of x23,
%35 and x111 faster compared to CADET on a single CPU
thread when a simulation quality of low-, engineering- and
high-precision is required, respectively.



6. Conclusions

In this work, the ChromaTech framework has been
presented for simulation of liquid chromatography pro-
cesses with mass transport modelled by the pore and sur-
face diffusion general rate model. ChromaTech is based
on a highly efficient spatial discretization procedure that
achieves exponential decay of approximation errors within
axial and radial elements while maintaining stability.

ChromaTech’s spectral engine has been validated on a
simple problem involving a single-component feed mixture
under linear adsorption conditions. Here, simulations were
compared with a high-precision reference obtained using
CADET-semi-analytic, a code which is based on the nu-
merical inverse Laplace operator with a proven truncation
error at the column outlet.

The performance of ChromaTech was evaluated in mul-
ticomponent protein purification cases with both linear
and non-linear adsorption dynamics. Here, ChromaTech
was compared against CADET, a dedicated code based
on a finite volume method with second (low) order spa-
tial accuracy. Since no analytical solution is available for
non-linear chromatography models, a fully resolved refer-
ence solution was used for comparisons instead. It was
demonstrated, that ChromaTech and CADET gives sim-
ilar chromatograms, providing evidence that both codes
are correctly implemented. However, ChromaTech can
significantly reduce computational efforts in terms of both
computational cost and discrete problem size without com-
promising stability. Therefore, it is especially suitable as
a building block in more advanced model-based strategies
including:

o Efficient monitoring of chromatography columns
based on non-linear state-estimation.

o Efficient process control using non-linear model pre-
dictive control.

o Efficient downstream flow-sheet designs using rigorous
process synthesis tools.

« Rigorous uncertainty analysis using e.g. the Bayesian
inference framework.
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